文学极限考研
这都是基于洛必达定律。
(1)设y = x (1/x)
两边的对数lny = ln[x(1/x)]=(1/x)lnx =(lnx)/x。
当x ~ +∞,(lnx)/x是∞ /∞型时,所以可以用洛必达法则。
当x ~ +∞,lim lny = lim[(lnx)/x]= lim[(1/x)/1]= lim 1/x = 0。
原始限制= e lny = e 0 = 1。
(2)仍然让y = x x。
取两边㏑y=x㏑x的对数。
当x~0+时,x㏑x是0 ∞型,所以可以用洛必达法则。
当x~0+时,lim(㏑y)= lim(x㏑x)= lim[(㏑x)/(1/x)]= lim[(1/x)/(-65438))]= lim(-x)= 0
原始限制= e lny = e 0 = 1。