考研,高数,积分题,语文画线部分怎么弄?如何使tanx=t,然后我们可以找到下面的代入公式?背部

解决方案:

tanx = t,

∴sinx = 2t/(1+t^2)

dx = dt/(1+t^2)

∴∫(0,π/2)(sinx)^2/[1+(sinx)^2)

=∫(0,+∞)t^2/[2(t^2)+1][(t^2)+1]dt

注意到:

t^2 =[2(t^2)+1]-[(t^2)+1]

因此:

原积分= ∫ (0,+∞){[2(T2)+1]-[(T2)+1]}/[2(T2)+1][(T2)

=∫(0,+∞)[2(t^2)+1]/[2(t^2)+1][(t^2)+1]dt-

∫(0,+∞)[(t^2)+1]/[2(t^2)+1][(t^2)+1]dt

=∫(0,+∞)1/[(t^2)+1]dt-∫(0,+∞) 1/[2(t^2)+1]dt

=反正切|(0,+∞) - (1/√2)∫(0,+∞)1/[(√2t)^2+1]d(√2t)

=[反正切- (1/√2)反正切√2t ]|(0,+∞)

=[1-(1/√2)]π