考研,高数,积分题,语文画线部分怎么弄?如何使tanx=t,然后我们可以找到下面的代入公式?背部
解决方案:
tanx = t,
∴sinx = 2t/(1+t^2)
dx = dt/(1+t^2)
∴∫(0,π/2)(sinx)^2/[1+(sinx)^2)
=∫(0,+∞)t^2/[2(t^2)+1][(t^2)+1]dt
注意到:
t^2 =[2(t^2)+1]-[(t^2)+1]
因此:
原积分= ∫ (0,+∞){[2(T2)+1]-[(T2)+1]}/[2(T2)+1][(T2)
=∫(0,+∞)[2(t^2)+1]/[2(t^2)+1][(t^2)+1]dt-
∫(0,+∞)[(t^2)+1]/[2(t^2)+1][(t^2)+1]dt
=∫(0,+∞)1/[(t^2)+1]dt-∫(0,+∞) 1/[2(t^2)+1]dt
=反正切|(0,+∞) - (1/√2)∫(0,+∞)1/[(√2t)^2+1]d(√2t)
=[反正切- (1/√2)反正切√2t ]|(0,+∞)
=[1-(1/√2)]π