高等数学——2020年考研数学考试大纲

考研数学入门可以说是所有考试科目中比较难的一科,其中高等数学尤其难,更需要根据考试大纲进行复习,否则很容易走入复习的误区。今年考研大纲预计9月份发布。现在可以通过2020考试大纲来复习试卷结构和方向。今天给大家带来的是2020考研大纲——高等数学。让我们来看看。

一、函数、极限和连续性

考试内容

函数的概念及其表示,函数的有界性、单调性、周期性和奇偶性,反函数、分段函数、隐函数的基本初等函数的性质,图形初等函数的函数关系的建立。

数列极限和函数极限的定义及其性质,函数的左极限和右极限,无穷小和无穷小的概念及其关系,无穷小的性质和无穷小的四个运算极限,两个重要的极限:单调有界判据和pinch判据。

函数连续性的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示,就会建立起应用题的函数关系。

2.理解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数和分段函数的概念,反函数和隐函数的概念。

4.掌握基本初等函数的性质和图形,理解初等函数的概念。

5.了解极限的概念,函数的左极限和右极限的概念以及函数极限的存在性与左极限和右极限的关系。

6.掌握极限的性质和四种算法。

7.掌握极限存在的两个判据,并利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小和无穷小的概念,掌握无穷小的比较方法,用等价无穷小求极限。

9.理解函数连续(包括左连续和右连续)的概念,会区分函数不连续点的类型。

10.理解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值定理、中值定理),并应用这些性质。

二、一元函数微分学

考试内容

导数和微分概念的几何意义与物理意义函数的可导性和连续性的关系;平面曲线的切线、法向导数和微分的四则运算:基本初等函数的导数;由反函数、隐函数和参数方程确定的函数的高阶导数的微分方法;一阶微分形式的不变微分中值定理;医院规则;极值函数图的凹凸性、拐点和渐近曲线;函数图的最大和最小弧微分曲率。

考试要求

1.了解导数和微分的概念,了解导数和微分的关系,了解导数的几何意义,求平面曲线的切线方程和法线方程,了解导数的物理意义,用导数描述一些物理量,了解函数可导性和连续性的关系。

2.掌握导数的四种算法和复合函数的求导法则,掌握基本初等函数的求导公式。知道了微分的四种算法和一阶微分形式的不变性,就可以求出函数的微分。

3.如果你理解了高阶导数的概念,你会发现简单函数的高阶导数。

4.我们可以求分段函数、隐函数、参数方程确定的函数、反函数的导数。

5.理解并运用罗尔定理、拉格朗日中值定理、泰勒定理,理解并运用柯西中值定理。

6.掌握用洛必达定律求不定式极限的方法。

7.了解函数极值的概念,掌握判断函数单调性和用导数求函数极值的方法,掌握求函数最大值和最小值的方法及其应用。

三、不定积分和定积分

考试要求

1.理解原函数的概念和不定积分、定积分的概念。

2.掌握不定积分的基本公式,不定积分和定积分的性质以及定积分的中值定理,掌握换元法和分部积分法的积分方法。

3.懂得有理函数,有理三角函数,简单无理函数的积分。

4.了解积分上限的作用,求其导数,掌握牛顿-莱布尼兹公式。

5.理解广义积分的概念,计算广义积分。

6.掌握表达和计算一些几何量和物理量的平均值(平面图形的面积、平面曲线的弧长、旋转体的体积和侧面积、平行截面的面积是已知的固体体积、功、重力、压力、质心、形心等。)和定积分函数。

四、向量代数与空间解析几何

考试内容

向量的概念向量的线性运算向量的数积和叉积向量的混合积是两个向量垂直平行的条件;夹角向量的坐标表达式及其运算单位向量方向数和方向余弦曲面方程和空间曲线方程;概念平面方程;直线方程;平面与平面、平面与直线的夹角;平行和垂直条件下的距离指向平面和直线;球面柱面回转面的常见二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标平面上的投影曲线方程。

考试要求

1.了解空间直角坐标系,了解向量的概念及其表示。

2.掌握向量的运算(线性运算、数量积、叉积、混合积),了解两个向量垂直平行的条件。

3.了解单位向量、方向数、方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法。

4.主平面方程和直线方程及其解法。

5.会求平面、平面与直线、直线与直线的夹角,会利用平面与直线的关系(平行、垂直、相交等。)来解决相关问题。

6.可以求出点到一条直线的距离和点到一个平面的距离。

7.理解曲面方程和空间曲线方程的概念。

8.知道了二次曲面的方程和它的图形,就可以求出简单圆柱面和回转面的方程。

9.理解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,求投影曲线的方程。

动词 (verb的缩写)多元函数微分学

考试内容

多元函数的概念,二元函数的几何意义,二元函数的极限和连续性的概念,有界闭区域上多元连续函数的性质,多元函数偏导数和全微分存在的充要条件

多元复合函数与隐函数的求导方法二阶偏导数方向导数与梯度空间曲线的切平面和法平面的二阶泰勒公式多元函数的极值与条件极值多元函数的最大值与最小值及其简单应用

考试要求

1.了解多元函数的概念和二元函数的几何意义。

2.理解二元函数的极限和连续性的概念,以及有界闭区域内连续函数的性质。

3.了解多元函数的偏导数和全微分的概念,可以找到全微分,了解全微分存在的充要条件,了解全微分形式的不变性。

4.理解方向导数和梯度的概念,掌握它们的计算方法。

5.掌握多元复合函数一、二阶偏导数的求解。

6.知道了隐函数的存在定理,就可以求出多元隐函数的偏导数。

7.理解空间曲线的切线和法平面以及曲面的切线和法平面的概念,并求出它们的方程。

8.了解二元函数的二阶泰勒公式。

9.了解多元函数极值和条件极值的概念,掌握多元函数极值的必要条件,了解二元函数极值的充分条件,求二元函数极值,用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。

六、多元函数积分学

考试内容

二重积分和三重积分的概念、性质、计算和应用;两类曲线积分的概念、性质和计算:格林公式;平面曲线积分与路径无关的条件;二元函数的原函数;两类曲面积分的概念、性质和计算:高斯公式;斯托克斯公式;散度和旋度的概念;以及曲线积分和曲面积分的计算。

考试要求

1.理解二重积分的概念、性质和中值定理。

2.掌握二重积分(直角坐标、极坐标)的计算方法,能计算三重积分(直角坐标、柱坐标、球坐标)。

3.理解两类曲线积分的概念、性质和关系。

4.掌握两类曲线积分的计算方法。

5.掌握格林公式并利用平面曲线积分与路径无关的条件,求二元函数全微分的原函数。

6.了解两类曲面积分的概念、性质和关系,掌握两类曲面积分的计算方法,掌握用高斯公式计算曲面积分的方法,用斯托克斯公式计算曲线积分。

7.引入并计算了溶解和旋度的概念。

8.一些几何量和物理量(面积、体积、表面积、弧长、质量、质心、形心、惯性矩、重力、功和流量等。)可以利用多重积分、曲线积分、曲面积分得到。

七、无穷级数

考试要求

1.了解收敛的常数项级数的敛散性、和的概念,掌握级数的基本性质和收敛的必要条件。

2.掌握几何级数和级数敛散性的条件。

3.掌握正项级数收敛的比较法和比值法,会用到根值法。

4.掌握交错级数的莱布尼茨判别法。

5.了解任意级数的绝对收敛和条件收敛的概念以及绝对收敛和收敛的关系。

6.了解函数项级数的收敛域和和函数的概念。

7.理解幂级数收敛半径的概念,掌握幂级数收敛半径、收敛区间、收敛域的求解。

8.知道了幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导、逐项积分),我们就会求出某些幂级数在其收敛区间内的和函数,进而求出某些级数的几项之和。

9.理解函数展开成泰勒级数的充要条件。

以上是考研高等数学入学考试大纲的具体内容。希望对大家有帮助。在这里提醒大家,在最后冲刺阶段,最好回归大纲,做有针对性的题,多做模拟测试。让我们做好联考试卷的顺序和时间分配。加油!