考研301数学考试大纲
(1)函数极限连续性?
1.理解函数的概念和表示法,会建立应用问题的函数关系。2.理解函数的有界性、单调性、周期性和奇偶性。3.理解复合函数与分段函数、反函数与隐函数的概念。5.了解极限的概念,函数的左极限和右极限的概念以及函数极限的存在性与左极限和右极限的关系。6.掌握极限的性质和四种算法。7.掌握极限存在的两个判据,并利用它们求极限,掌握利用两个重要极限求极限的方法。8.理解无穷小和无穷小的概念,掌握无穷小的比较方法,用等价无穷小求极限。9.理解函数连续(包括左连续和右连续)的概念,会区分函数不连续的类型。10.了解连续函数的性质和初等函数的连续性,了解连续函数在闭区间上的性质(有界性、最大值定理、中值定理),并应用这些性质。
(2)一元函数微分学?
1.了解导数和微分的概念,了解导数和微分的关系,了解导数的几何意义,了解平面曲线的切线方程和法线方程,了解导数的物理意义,用导数描述一些物理量,了解函数可导性和连续性的关系。2.掌握导数的四种算法和复合函数的求导规则。掌握基本初等函数的求导公式。理解了微分的四则运算法则和一阶微分形式的不变性,你就找到了函数的微分。3.理解高阶导数的概念,你会发现简单函数的高阶导数。4.你会发现分段函数的导数。我会求隐函数的导数,参数方程确定的函数,反函数。5.我会理解和运用罗尔定理、拉格朗日中值定理、泰勒定理,我会理解和运用柯西中值定理。6.我会掌握用罗必达定律求不定式极限的方法。7.我会理解函数极值的概念。掌握判断函数单调性和用导数求函数极值的方法,掌握求函数最大值和最小值的方法及其应用。8.用导数判断函数图的凹凸性(注:在区间内,设函数有二阶导数。当f'' (x)>时;0,f(x)的图形是凹的;当f”(x)< 0,f(x)的图形是凸的)时,会找到函数图形的拐点和水平、垂直、斜渐近线,并对函数的图形进行描述。
(3)一元函数的积分
考试要求是1。理解原函数、不定积分、定积分的概念。2.掌握不定积分的基本公式,不定积分和定积分的性质以及定积分的中值定理,掌握代换积分和分部积分的方法。3.知道如何求有理函数,有理三角函数,简单无理函数的积分。4.了解积分上限的作用,知道如何求其导数。掌握牛顿-莱布尼茨公式。5.理解了广义积分的概念,你就会计算广义积分。6.掌握一些几何物理量的表达和计算(平面图形的面积,平面曲线的弧长,旋转体的体积和侧面积,平行截面的面积是已知的固体体积,功,重力,压力,质心,质心等。)和函数的平均值。
(D)向量代数和空间解析几何
考试要求?1.了解空间直角坐标系,了解向量的概念和表示。2.掌握向量的运算(线性运算、数量积、叉积、混合积),了解两个向量垂直平行的条件。3.理解单位向量、方向数、方向余弦、向量的坐标表达式。掌握用坐标表达式进行向量运算的方法。4.主平面方程和直线方程及其解法。5.知道平面之间,平面与直线之间,直线与直线之间的夹角。并且会利用平面与直线的关系(平行度、垂直度、相交度等。)来解决相关问题。6.会求点到直线和点到平面的距离。7.理解曲面方程和空间曲线方程的概念。8.了解常见的二次曲面及其图形的方程,会发现简单柱面和旋转曲面的方程。9.了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,会找到的。
(5)多元函数微分学?
考试要求是1。了解多元函数的概念和二元函数的几何意义。2.了解二元函数的极限和连续性的概念,以及有界闭区域内连续函数的性质。3.了解多元函数的偏导数和全微分的概念,求全微分,了解全微分存在的充要条件,了解全微分形式的不变性。4.理解方向导数和梯度的概念。并掌握其计算方法。5.掌握多元复合函数的一阶和二阶偏导数的求解。6.理解了隐函数的存在定理,你就会发现多元隐函数的偏导数。7.理解空间曲线的切平面和法平面以及曲面的切平面和法平面的概念,你会发现它们的方程。8.了解二元函数的二阶泰勒公式。9.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件。知道了二元函数极值存在的充分条件,就可以求二元函数的极值,用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。
(6)多元函数积分学
测试需要1。了解二重积分和三重积分的概念,了解二重积分的性质,了解二重积分的中值定理。2.掌握二重积分(直角坐标、极坐标)的计算方法,计算三重积分(直角坐标、柱坐标、球坐标)。3.了解两类曲线积分的概念,了解两类曲线积分的性质和关系。4.掌握两类曲线积分的计算方法。5.掌握格林公式,利用平面曲线积分与路径无关的条件,求二元函数全微分的原函数。6.了解两类曲面积分的概念、性质和关系,掌握两类曲面积分的计算方法,掌握用高斯公式计算曲面积分的方法。斯托克斯公式将用于计算曲线积分。7.将介绍溶解和卷曲的概念。一些几何量和物理量(面积、体积、表面积、弧长、质量、质心、形心、惯性矩、重力、功和流量等。)会用多重积分,曲线积分,曲面积分来计算。
(7)无穷级数
测试要求是1。了解收敛的常数项级数的敛散性、和的概念,掌握级数的基本性质和收敛的必要条件。2.掌握几何级数和级数敛散性的条件。3.掌握正项级数收敛的比较和比值判别方法。我可以用根值判别法。4.掌握交错级数的莱布尼茨判别法。5.了解任意级数的绝对收敛和条件收敛的概念以及绝对收敛和收敛的关系。6.了解函数级数的收敛域和和函数的概念。7.理解幂级数收敛半径的概念,掌握幂级数收敛半径。收敛区间和收敛域的求解。8.知道了幂级数在其收敛区间内的基本性质(和函数的连续性,逐项求导,逐项积分),我们就会求出某些幂级数在其收敛区间内的和函数,进而求出某些多项式级数的和。9.知道函数展开成泰勒级数的充要条件。10.掌握、、和的麦克劳林展开式。它们将被用来间接地把一些简单的函数展开成幂级数。11.知道了傅里叶级数的概念和狄利克雷收敛定理,我们就把定义在地面上的函数展开成傅里叶级数,把定义在地面上的函数展开成正弦级数和余弦级数,写出傅里叶级数和函数的表达式。
(8)常微分方程
考试要求是1。了解微分方程的概念及其阶、解、通解、初始条件、特解。2.掌握变量可分离的微分方程和一阶线性微分方程的解法。3.知道如何解齐次微分方程,伯努利方程,全微分方程。会用简单变量解一些微分方程。4.将使用降阶法求解以下形式的微分方程:5 .了解线性微分方程解的性质和结构。6.掌握二阶常系数齐次线性微分方程的求解,会解一些高于二阶的常系数齐次线性微分方程。7.会解多项式、指数函数、正弦函数、余弦函数及其和与积的二阶非常数系数等自由项。
第二,线性代数
(1)行列式?
考试内容:行列式的概念和基本性质?行列式按行(列)展开的定理?
考试要求:1。理解行列式的概念和性质。2.应用行列式和行列式的性质,根据行(列)展开定理计算行列式。
(2)矩阵?
考试内容:矩阵的概念,矩阵的线性运算,乘法矩阵的行列式矩阵的转置逆矩阵的概念和性质,矩阵可逆的充要条件,伴随矩阵的初等变换,初等矩阵的秩矩阵等价分块矩阵及其运算?
考试要求:1。了解矩阵、单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵的概念及其性质。2.掌握矩阵的线性运算、乘法、转置及其运算规则,了解方阵幂和方阵积的行列式性质。3.理解逆矩阵的概念,掌握逆矩阵的性质和矩阵可逆的充要条件。为了理解伴随矩阵的概念,我们将利用伴随矩阵来求逆矩阵。4.了解矩阵的初等变换的概念,初等矩阵的性质和矩阵等价的概念,矩阵秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法。5.理解分块矩阵及其运算。
(3)向量?
考试内容:?向量的概念向量的线性组合和线性表示向量组的线性相关和线性独立向量组的最大线性独立组等价于向量组的秩向量组的秩和矩阵的秩的关系,以及相关概念的内积线性独立向量组的正交归一方法N维向量空间基变换和坐标变换转换矩阵向量。
考试要求:?1.理解N维向量、向量的线性组合和线性表示的概念。2.了解向量组的线性相关和线性无关的概念,掌握向量组的线性相关和线性无关的相关性质和判别方法。3.理解向量组的最大线性无关组和秩的概念,你会发现向量组的最大线性无关组和秩。4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩之间的关系。5.了解n维向量空间、子空间、基、维数、坐标等概念。6.理解了基变换和坐标变换的公式,你就找到了转移矩阵。7.了解内积的概念,掌握线性无关向量组正交归一的施密特方法。8.了解归一化正交基和正交矩阵的概念及其性质。
(4)线性方程组?
考试内容:?线性方程组的克莱姆法则齐次线性方程组有非零解的充要条件非齐次线性方程组有解的充要条件线性方程组解的性质和结构齐次线性方程组的基本解系和一般解空间中非齐次线性方程组的一般解?
考试要求?l可以用克莱姆法则。2.理解齐次线性方程组有非零解,非齐次线性方程组有解的充要条件。3.了解齐次线性方程组的基本解系、通解、解空间的概念,掌握齐次线性方程组的基本解系、通解的求解。4.了解非齐次线性方程组解的结构和通解的概念。5.掌握用初等行变换解线性方程组的方法。
(5)矩阵的特征值和特征向量是什么?
考试内容:?矩阵的特征值和特征向量的概念,性质相似变换,相似矩阵的概念和性质矩阵相似对角化的充要条件,相似对角矩阵的实对称矩阵的特征值、特征向量和相似对角矩阵?
考试要求:?1.理解一个矩阵的特征值和特征向量的概念和性质,你就会找到矩阵的特征值和特征向量。2.理解相似矩阵的概念和性质以及矩阵相似对角化的充要条件,掌握将矩阵转化为相似对角矩阵的方法。3.掌握实对称矩阵的特征值和特征向量的性质。
(6)二次型?
考试内容:?二次型及其矩阵表示合同变换和合同矩阵二次型的秩惯性定理。用正交变换和匹配法将二次型的标准形和规范形转化为标准二次型及其矩阵的正定性。
考试要求:?1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变化和合同矩阵的概念,了解二次型的标准型和标准形的概念以及惯性定理。2.掌握用正交变换将二次型化为标准型的方法,会用匹配法将二次型化为标准型。3.了解正定二次型和正定矩阵的概念,掌握其判别方法。
三、概率论与数理统计
(一)随机事件与概率?
考试内容:?随机事件与样本空间事件的关系及完全操作事件组概率概念概率的基本性质;古典概率几何概率条件概率的基本公式;事件的独立重复测试?
考试要求:?1.了解样本空间(基本事件空间)的概念,了解随机事件的概念,掌握事件的关系和运算。2.理解概率和条件概率的概念,掌握概率的基本性质,计算古典概率和几何概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式和贝叶斯公式。3.理解事件独立性的概念,掌握具有事件独立性的概率计算;了解独立重复试验的概念,掌握相关事件概率的计算方法。
(2)随机变量及其分布?
考试内容:?随机变量分布函数的概念和性质随机变量离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数?
测试要求:1。理解随机变量的概念。了解分布函数?的概念和性质。将计算与随机变量相关的事件的概率。2.了解离散随机变量的概念及其概率分布,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用。3.理解泊松定理的结论和应用条件,用泊松分布近似表示二项分布。4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,其中参数为λ(λ>;0)的指数分布的概率密度为5。随机变量函数的分布将被发现。
(3)多维随机变量及其分布?
考试内容是什么?多维随机变量及其分布二维离散随机变量的概率分布、边缘分布和条件分布二维连续随机变量的概率密度、边际概率密度和条件密度?随机变量的独立性和无关性二维随机变量的分布是常用的。两个或多个随机变量的简单函数的分布?
考试要求?1.了解多维随机变量的概念,了解多维随机变量分布的概念和性质,了解二维离散随机变量的概率分布、边缘分布和条件分布,了解二维连续随机变量的概率密度、边缘密度和条件密度,找到二维随机变量相关事件的概率。2.理解随机变量的独立性和无关性的概念,掌握随机变量相互独立的条件。3.掌握二维均匀分布,了解二维正态分布的概率密度,了解其参数的概率意义。4.会求两个随机变量的简单函数的分布,会求多个独立随机变量的简单函数的分布。
(4)随机变量的数值特征?
考试内容是什么?随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质?
考试要求?1.了解随机变量数值特征的概念(数学期望、方差、标准差、矩、协方差、相关系数),运用数值特征的基本性质,掌握常见分布的数值特征?2.知道随机变量函数的数学期望。
(5)大数定律和中心极限定理?
考试内容是什么?切比雪夫不等式切比雪夫大数定律伯努利大数定律钦钦钦大数定律德莫维尔-拉普拉斯定理利维-林德伯格定理?
考试要求?1.理解切比雪夫不等式。2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律)。3.了解de moivre-Laplace定理(二项分布以正态分布为极限分布)和Levi-Lindbergh定理(独立同分布随机变量序列的中心极限定理)。
(6)数理统计的基本概念?
考试内容是什么?总体样本均值样本方差和样本矩分布分布分位数正态总体常见抽样分布的简单随机样本统计?
考试要求?1.理解总体、简单随机样本、统计学、样本均值、样本方差和样本矩的概念,其中样本方差定义为:?2.了解分布、分布、分布的概念和性质,了解上分位数的概念并查表计算。3.了解正态总体的常见抽样分布。
(7)参数估计?
考试内容是什么?点估计和估计值的概念估计量矩估计方法极大似然估计方法估计准则区间估计概念单个正态总体均值和方差的区间估计两个正态总体均值差和方差比的区间估计?
测试要求是1。理解点估计、估计量和参数估计值的概念。2.掌握矩估计法(一阶矩、二阶矩)和极大似然估计法。3.了解无偏估计、有效性(最小方差)和一致性(一致性)的概念,验证无偏估计。4.理解区间估计的概念。
(8)假设检验?
考试内容是什么?显著性检验中的两类错误假设检验单个和两个正态总体的均值和方差的假设检验?
考试要求?1.了解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验中可能出现的两种错误。2.掌握单个和两个正态总体的均值和方差的假设检验。