2016考研数字三有共轭矩阵吗?

前几年三本数学教材的线生成部分都没有提到* * *轭矩阵:

线性代数

一.决定因素

考试内容

行列式的概念和基本性质行列式按行(列)展开定理

考试要求

1.理解行列式的概念,掌握其性质。

2.将应用行列式的性质和行列式展开定理来计算行列式。

第二,矩阵

考试内容

矩阵的概念、矩阵的线性运算、矩阵的乘法、行列式矩阵的转置逆矩阵的概念和性质、矩阵可逆的充要条件、矩阵的初等变换与初等矩阵的秩矩阵的等价分块矩阵及其运算

考试要求

1.了解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义和性质,了解对称矩阵、反对称矩阵、正交矩阵的定义和性质。

2.掌握矩阵的线性运算、乘法、转置及其运算规则,了解方阵幂和方阵积的行列式性质。

3.了解逆矩阵的概念,掌握逆矩阵的性质和矩阵可逆的充要条件,了解伴随矩阵的概念,利用伴随矩阵求逆矩阵。

4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,了解矩阵秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法。

5.了解分块矩阵的概念,掌握分块矩阵的算法。

第三,矢量

考试内容

向量的概念向量的线性组合与向量组的线性表示线性相关与线性独立向量组的最大线性独立等价向量组内积线性独立向量组的正交归一方法秩向量组的秩与矩阵的秩之间。

考试要求

1.理解向量的概念,掌握向量加法和乘法的运算。

2.了解向量的线性组合和线性表示、向量组的线性相关和线性无关的概念,掌握向量组的线性相关和线性无关的相关性质和判别方法。

3.理解向量组的极大线性无关组的概念,可以求出向量组的极大线性无关组和秩。

4.理解向量组等价的概念以及矩阵的秩与其行(列)向量组的秩之间的关系。

5.了解内积的概念,掌握线性无关向量组正交归一的施密特方法。

第四,线性方程组

考试内容

线性方程的克莱姆法则;线性方程解的存在和不存在的判定;齐次线性方程组的基本解系以及非齐次线性方程组的解与对应的齐次线性方程组的解之间的关系(导群);非齐次线性方程组的通解。

考试要求

1.会用克莱姆法则解线性方程组。

2.掌握判断非齐次线性方程组存在与不存在的方法。

3.了解齐次线性方程组基本解系的概念,掌握齐次线性方程组基本解系的解法和一般解法。

4.了解非齐次线性方程组解的结构和通解的概念。

5.掌握用初等行变换解线性方程组的方法。

动词 (verb的缩写)矩阵的特征值和特征向量

考试内容

矩阵的特征值和特征向量的概念,性质相似矩阵的概念和性质矩阵相似对角化的充要条件,相似对角矩阵和相似对角矩阵的实对称矩阵的特征值和特征向量。

考试要求

1.了解矩阵特征值和特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法。

2.了解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵相似于对角的充要条件,掌握将矩阵转化为相似对角矩阵的方法。

3.掌握实对称矩阵的特征值和特征向量的性质。

第六,二次型

考试内容

二次型及其矩阵表示合同变换和合同矩阵二次型的秩惯性定理。用正交变换和匹配法将二次型的标准形和标准形转化为标准二次型及其矩阵的正定性

考试要求

1.理解二次型的概念,用矩阵形式表示二次型,理解合同变换和合同矩阵的概念。

2.理解二次型的秩的概念,二次型的标准型和标准型的概念,以及惯性定理,用正交变换和配点法将二次型化为标准型。

3.了解正定二次型和正定矩阵的概念,掌握其判别方法。